Report

The Future of AI in drug discovery: Key Transformative Trends and Strategic Implications

Executive Summary

The future of AI in real-time strategic positioning and competitive advantage for drug discovery is rapidly advancing, shaped by several transformative trends. Agentic AI—autonomous digital colleagues—will evolve from supporting decision-making to actively executing tasks throughout the pharmaceutical value chain. These AI agents are capable of independently generating clinical trial protocols, simulating cost scenarios, and initiating regulatory processes, all while adaptively learning and maintaining contextual awareness. This shift will enable organizations to respond to market dynamics and competitor actions in real time, fundamentally transforming strategic decision-making from reactive to proactive and predictive approaches (1).

Generative AI is revolutionizing molecular design and pipeline optimization by enabling the creation of novel drug candidates, simulation of ADMET properties, and prediction of clinical success rates with high accuracy (2–5). AI-powered platforms now integrate market intelligence and scientific data, providing real-time monitoring of competitor pipelines, licensing deals, and regulatory changes, thereby conferring a strategic edge in portfolio management and investment decisions (6–7). Predictive analytics further refine market forecasting, resource allocation, and risk assessment (2, 8).

AI is also increasingly embedded in regulatory strategy and compliance. As regulatory frameworks adapt, pharmaceutical companies must invest in AI literacy, agile dossier models, and digital platforms that support continuous evidence generation and regulatory foresight (9). Real-world evidence and post-market surveillance are now powered by AI (2, 10). The convergence of AI with quantum computing and digital health twins will unlock new dimensions of competitive advantage (3, 11).

In summary, the future landscape will be defined by agentic and generative AI models autonomously driving strategic actions across R&D, clinical development, regulatory affairs, and portfolio management (1–8). Organizations that invest in data quality, AI talent, and integrated digital infrastructures will be optimally positioned to lead (2–4, 9, 11).

Multimodal AI: Integrating Molecular Structures, Genomics, and Clinical Data

Current Applications of Multimodal AI

AI models advance drug discovery by integrating molecular, genomic, and clinical data through multimodal deep learning, knowledge graphs, and multi-agent systems (10–18). Deep neural networks predict drug–target interactions considering toxicity, regulation, and efficacy (15). Knowledge graphs enable reasoning across disparate data types for repurposing and biomarker discovery (14, 18).

Platforms like Recursion OS integrate generative modeling, deep learning, and single-cell analytics (10). AI-powered multi-omics integration combines genomics, transcriptomics, proteomics, and metabolomics (12–13). Clinical integration now aligns spatial molecular imaging, proteomics, and transcriptomics for 3D tumor mapping (17).

Agentic AI and multi-agent systems enable collaborative reasoning across datasets (16). NLP systems mine scientific literature for target-disease associations and repurposing opportunities (18).

Despite advances, challenges persist:

  • Data heterogeneity
  • Lack of standardization
  • Model interpretability
  • Ethical and privacy issues (19–21)

Predicting Efficacy and Safety Preclinically

Multimodal AI integrates chemical structures, omics, clinical records, and imaging data to predict efficacy and safety preclinically (22–28). These systems correlate genetic variants, protein structures, and phenotypes to improve success probability.

For safety, multimodal AI integrates chemical descriptors, transcriptomic responses, and adverse event data (23, 26, 28–31). Models like MADRIGAL unify structural, pathway, and transcriptomic data (23, 28, 31). Platforms like inClinico forecast Phase II outcomes (24).

Key limitations:

  • Data fragmentation and bias (22, 30, 32)
  • Limited interpretability (19, 26, 31)
  • Fusion complexity
  • Ethical and privacy constraints

Challenges in Multimodal Data Fusion

Multimodal AI faces three core challenge categories:

  1. Data Challenges
    • Heterogeneous formats
    • Missing modalities
    • Privacy constraints
    • Batch effects (33–42)
  2. Computational Challenges
    • High dimensionality
    • Resource demands
    • Incomplete data handling (34–42)
  3. Interpretability Challenges
    • Black-box models
    • Bias and trust concerns
    • Regulatory explainability needs (14–42)

AI-Powered Lab Automation: From Target to Lead in Weeks, Not Years

AI in Target Prioritization and Compound Suggestion

AI analyzes multi-omics, literature, and clinical datasets to identify disease targets. Deep learning, GNNs, and AlphaFold enable rapid druggability assessment (44–49).

Generative AI (VAEs, diffusion models, GNNs) designs novel molecules. QSAR and reinforcement learning optimize candidates. Robotics execute synthesis and screening in closed loops (44–56).

Companies like Insilico Medicine and Atomwise demonstrate autonomous DMTA cycles with massive acceleration (57–58).

Autonomous AI Scientists and Robotic Labs

Platforms like BioMARS, Argonne SDL, PNNL AMP2, and Berkeley A-Lab integrate LLMs, robotics, and real-time optimization for fully autonomous labs (59–69).

Capabilities include:

  • Autonomous hypothesis generation
  • Robotic execution
  • Closed-loop optimization
  • High-throughput discovery

Human roles shift toward strategy, creativity, and governance.

Impact on Drug Discovery Timelines and Costs

Traditionally:

  • 10+ years
  • Billions in cost
  • High attrition (70–72)

With AI automation:

  • Target discovery in days
  • 25–50% preclinical cost reduction
  • 2–4× efficiency gains
  • Up to 90% manual work eliminated (73–80)

ChemLex reports months compressed into weeks (75). Active learning reduces experimental needs by up to 10× (80).

Case Studies: Real-World Implementation

  • Recursion: Closed-loop robotics + AI (83–85)
  • Iktos: DMTA under 2 years (86–87)
  • Insilico: Target → Phase II in under 3 years (87–88)
  • Atomwise: Virtual screening at massive scale (88)
  • Astellas: 70% timeline reduction (89)
  • Novartis MicroCycle: Fully autonomous synthesis (90)
  • IBM RoboRXN: Cloud-based self-driving chemistry (91)
  • Emerald Cloud Lab: 50% faster cycles (92–93)

Explainable AI and the Regulatory Challenge

Current Regulatory Landscape

FDA (USA):

  • Risk-based credibility assessment
  • Context-of-use definition
  • GMLP principles
  • Qualified tools like AIM-NASH (94–99)

EMA (EU):

  • Risk-tiered approach
  • Frozen models in trials
  • Prospective validation
  • Human oversight (100–102)

Global harmonization is emerging (103–104).

Explainable AI: Definition and Importance

Explainable AI (XAI) provides transparent, auditable rationales for predictions using SHAP, LIME, etc. (105–107). XAI is essential for:

  • Regulatory approval
  • Trust and accountability
  • Safety and ethics (106–110)

It mitigates:

  • Bias
  • Data drift
  • Hidden failure modes (103–104)

Emerging Frameworks for Regulatory Approval

Key regulatory pillars:

  • Risk-based assessment (112–114)
  • Transparency & explainability (115–118)
  • Validation (GMLP, FAIR, ALCOA+) (110, 116)
  • Continuous monitoring (114, 119)
  • International harmonization (ICMRA, TREAT) (112, 121)
  • Ethics & data integrity (116–122)

Competitive Intelligence Meets Discovery: Real-Time Strategic Positioning

AI-Driven Real-Time Monitoring of Competitors

AI automates tracking of:

  • Patents
  • Clinical trials
  • Publications
    using NLP, graph ML, and APIs (123–127).

It enables:

  • Early signal detection
  • Trial outcome prediction
  • Patent landscape mapping
  • White-space identification

Strategic Portfolio Optimization via AI

AI platforms unify:

  • Science
  • Market data
  • Financials
  • Regulatory signals (128–133)

Tools like Causaly Pipeline Graph enable real-time querying, repurposing discovery, and portfolio simulation (129).

Digital twins and virtual pipelines support scenario simulation and capital allocation (134–137).

Integration of Competitive Intelligence and Discovery

Key enablers:

  • Central AI intelligence engines
  • Role-specific dashboards
  • Cloud-based infrastructure
  • Secure governance (140–144)

Organizationally:

  • CI democratization
  • Cross-functional access
  • Explainable outputs
  • Feedback learning loops (145–146)

Future Outlook for AI in Strategic Positioning

Agentic AI will:

  • Execute strategy autonomously
  • Generate protocols
  • Simulate markets
  • Initiate regulatory workflows (1)

Generative AI will:

  • Design molecules
  • Predict ADMET
  • Optimize pipelines (2–7)

AI + quantum + digital twins will:

  • Enable biological system simulation at scale (3, 11)

Conclusion

AI is reshaping every layer of drug discovery:

  • Multimodal AI improves target and candidate selection
  • Lab automation compresses years into weeks
  • Explainable AI ensures regulatory trust
  • Real-time CI transforms portfolio strategy

The winners will be those who invest deeply in:

  • Data quality
  • AI talent
  • Integrated digital infrastructure

The future belongs to agentic, generative, autonomous discovery systems—operating continuously, strategically, and at unprecedented speed.

References

1. The Agentic Era: Why Biopharma Must Embrace Artificial Intelligence That Acts, Not Just Informs

  • Authors: Lakhan SE
  • Journal: Cureus
  • Journal quality: Low quality
  • Publication year: 2025
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.7759/cureus.83390
  • Pmid: 40322603
  • Source url: External reference

2. AI-Powered Portfolio Management in Pharmaceuticals

  • Site name: drugpatentwatch.com
  • Published date: 2025-05-20
  • Type: WEBPAGE
  • Source url: External reference

3. AI in Pharma and Biotech: Market Trends 2025 and Beyond

  • Site name: coherentsolutions.com
  • Published date: 2025-11-24
  • Type: WEBPAGE
  • Source url: External reference

4. AI Across the R&D Value Chain: Drug Discovery - Sanofi

  • Site name: sanofi.com
  • Published date: 2025-07-09
  • Type: WEBPAGE
  • Source url: External reference

5. Artificial intelligence in drug discovery: recent advances and future perspectives

  • Authors: Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G
  • Journal: Expert opinion on drug discovery
  • Journal quality: Peer reviewed
  • Publication year: 2021
  • Citation count: 389
  • Type: PAPER
  • Doi: 10.1080/17460441.2021.1909567
  • Pmid: 33779453
  • Source url: External reference

6. The State of Competitive Intelligence in Pharma

  • Site name: northernlight.com
  • Published date: 2025-07-02
  • Type: WEBPAGE
  • Source url: External reference

7. Intelligencia Portfolio Optimizer™: AI-Powered Solutions for Drug ...

  • Site name: intelligencia.ai
  • Published date: 2025-08-11
  • Type: WEBPAGE
  • Source url: External reference

8. METHOD AND SYSTEM FOR PHARMACEUTICAL PORTFOLIO STRATEGIC MANAGEMENT DECISION SUPPORT BASED ON ARTIFICIAL INTELLIGENCE

  • Inventors: PIFFO EMMANUEL, AVRAMIOTI DIANA, GIERSCHENDORF JORDAN, RAYMOND CAMÉLIA
  • Applicants: GROUPE SORINTELLIS INC
  • Publication date: 2023-12-28
  • Priority date: 2022-06-23
  • Jurisdiction: WO
  • Cited by count: 3
  • Type: PATENT
  • Publication number: WO2023245301
  • Source url: External reference

9. Regulatory strategy reimagined: Three trends accelerating drug ...

  • Site name: drugdiscoverytrends.com
  • Published date: 2025-11-12
  • Type: WEBPAGE
  • Source url: External reference

10. From Lab to Clinic: How Artificial Intelligence (AI) Is Reshaping Drug Discovery Timelines and Industry Outcomes

  • Authors: Dermawan D, Alotaiq N
  • Journal: Pharmaceuticals (Basel, Switzerland)
  • Publication year: 2025
  • Citation count: 4
  • Type: PAPER
  • Doi: 10.3390/ph18070981
  • Pmid: 40732273
  • Source url: External reference

11. AI expert warns pharma industry: AI is a competitor, not just ...

  • Site name: europeanpharmaceuticalreview.com
  • Published date: 2025-10-30
  • Type: WEBPAGE
  • Source url: External reference

12. AI-Driven Multi-Omics Integration for Enhanced Drug Discovery Pipelines

  • Authors: Madhavan Periyasamy
  • Journal: 2025 International Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI)
  • Publication year: 2025
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.1109/ICMSCI62561.2025.10894291
  • Source url: External reference

13. Artificial intelligence in multi-omics data integration: Advancing precision medicine, biomarker discovery and genomic-driven disease interventions

  • Authors: Hassan Ali
  • Journal: International Journal of Science and Research Archive
  • Publication year: 2023
  • Citation count: 31
  • Type: PAPER
  • Doi: 10.30574/ijsra.2023.8.1.0189
  • Source url: External reference

14. Harnessing artificial intelligence for brain disease: advances in diagnosis, drug discovery, and closed-loop therapeutics

  • Authors: Fang SJ, Yin ZD, Cai Q, Li LF, Zheng PF, Chen LZ
  • Journal: Frontiers in neurology
  • Journal quality: Peer reviewed
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.3389/fneur.2025.1615523
  • Pmid: 40791911
  • Source url: External reference

15. Applications of Multimodal Artificial Intelligence in Non-Hodgkin Lymphoma B Cells

  • Authors: Isavand P, Aghamiri SS, Amin R
  • Journal: Biomedicines
  • Journal quality: Low quality
  • Publication year: 2024
  • Citation count: 12
  • Type: PAPER
  • Doi: 10.3390/biomedicines12081753
  • Pmid: 39200217
  • Source url: External reference

16. Accelerating Drug Discovery: How Agentic AI and Multi-Agent Collaboration Transform BioPharma R&D

  • Authors: Amandeep Singh Saini
  • Journal: Journal of Information Systems Engineering and Management; Journal of Information Systems Engineering & Management
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.52783/jisem.v10i59s.12898
  • Source url: External reference

17. Abstract 3648: AI-enabled 3D multimodal integration platform reveals subcellular architecture of tumor immune microenvironment for therapeutic target and biomarker discovery and patient selection

  • Authors: Inyeop Jang, Y. Choi, Minji Kim, J. Park, Ji-Youn Sung, Byungsoo Ann, Clemenceau R. Jean, TaeHyun Hwang
  • Journal: Cancer Research
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.1158/1538-7445.am2025-3648
  • Source url: External reference

18. Optimization of Microbial Consortium Formulation for Oily Food Waste Composting Using Mixture Design Methodology

  • Authors: Zhang Y, Shen Y, Ding J, Zhou H, Zhao H, Cheng H, Xu P, Qin Y, Jia Y
  • Journal: Microorganisms
  • Journal quality: Low quality
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.3390/microorganisms13092066
  • Pmid: 41011398
  • Source url: External reference

19. AI AND DEEP LEARNING IN DRUG DISCOVERY: ADVANCES, BENCHMARKS, AND FUTURE CHALLENGES

  • Authors: L. S. Upadhyayula, Mallu Mallikarjuna, Madduri Padmavathamma, GV Ramesh Babu
  • Journal: Journal of Population Therapeutics and Clinical Pharmacology
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.53555/3cf6ss76
  • Source url: External reference

20. From Molecules to Medicines: The Role of Artificial Intelligence in Accelerating Drug Discovery

  • Authors: Shubhangi D. Dhoble, Kashinath A. Sakhare, Pandit S. Biradar, Swati M. Narwate, Sachin P. Shinde, Nilesh N. Shinde
  • Journal: International Journal of Advanced Research in Science, Communication and Technology
  • Publication year: 2025
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.48175/ijarsct-25122
  • Source url: External reference

21. AI-Driven Molecular Design and Screening for Drug Discovery

  • Authors: Tharun Kumar R G, Prof. Kavya S
  • Journal: INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.55041/ijsrem52104
  • Source url: External reference

22. From siloed data to breakthroughs: multimodal AI in drug ...

  • Site name: drugtargetreview.com
  • Published date: 2025-06-11
  • Type: WEBPAGE
  • Source url: External reference

23. Multimodal AI predicts clinical outcomes of drug combinations from preclinical data

  • Authors: Yepeng Huang, Xiaorui Su, Varun Ullanat, Ivy Liang, Lindsay Clegg, Damilola Olabode, Nicholas Ho, Bino John, Megan Gibbs, M. Zitnik
  • Journal: ArXiv; arXiv.org
  • Publication year: 2025
  • Citation count: 4
  • Type: PAPER
  • Doi: 10.48550/arXiv.2503.02781
  • Pmid: 40093363
  • Source url: External reference

24. Prediction of Clinical Trials Outcomes Based on Target Choice and Clinical Trial Design with Multi-Modal Artificial Intelligence

  • Authors: Aliper A, Kudrin R, Polykovskiy D, Kamya P, Tutubalina E, Chen S, Ren F, Zhavoronkov A
  • Journal: Clinical pharmacology and therapeutics
  • Journal quality: Highest quality
  • Publication year: 2023
  • Citation count: 51
  • Type: PAPER
  • Doi: 10.1002/cpt.3008
  • Pmid: 37483175
  • Source url: External reference

25. Leveraging multimodal learning for enhanced drug-target interaction prediction

  • Authors: Guo Chen, Kaixin Sun
  • Journal: Frontiers in Pharmacology
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.3389/fphar.2025.1639979
  • Pmid: 41347164
  • Source url: External reference

26. Unlocking the potential: multimodal AI in biotechnology ...

  • Site name: nature.com
  • Published date: 2025-10-20
  • Type: WEBPAGE
  • Source url: External reference

27. From Molecules to Medicines: The Role of AI-Driven Drug Discovery Against Alzheimer's Disease and Other Neurological Disorders

  • Authors: Alghamdi MA
  • Journal: Pharmaceuticals (Basel, Switzerland)
  • Publication year: 2025
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.3390/ph18071041
  • Pmid: 40732328
  • Source url: External reference

28. Atractylenolide I ameliorated the growth and enzalutamide resistance of castration-resistant prostate cancer by targeting KIF15

  • Authors: Han C, Yang B, Deng Y, Hu P, Hu B, Liu X, Wang T, Li C, Liu J, Yuan H
  • Journal: Chinese medicine
  • Publication year: 2025
  • Citation count: 3
  • Type: PAPER
  • Doi: 10.1186/s13020-025-01086-1
  • Pmid: 40087774
  • Source url: External reference

29. A scoping review of artificial intelligence applications in clinical trial risk assessment

  • Authors: Teodoro D, Naderi N, Yazdani A, Zhang B, Bornet A
  • Journal: NPJ digital medicine
  • Publication year: 2025
  • Citation count: 4
  • Type: PAPER
  • Doi: 10.1038/s41746-025-01886-7
  • Pmid: 40731070
  • Source url: External reference

30. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges

  • Authors: T, i, w, a, r, i, , P, C, ,, P, a, l, , R, ,, C, h, a, u, d, h, a, r, y, , M, J, ,, N, a, t, h, , R
  • Journal: Drug development research
  • Journal quality: Peer reviewed
  • Publication year: 2023
  • Citation count: 80
  • Type: PAPER
  • Doi: 10.1002/ddr.22115
  • Pmid: 37712494
  • Source url: External reference

31. Abstract 902: Explainable AI: Graph machine learning for response prediction and biomarker discovery

  • Authors: Jake Cohen-Setton, K. Bulusu, Jonathan R Dry, Ben Sidders
  • Journal: Cancer Research
  • Publication year: 2024
  • Type: PAPER
  • Doi: 10.1158/1538-7445.am2024-902
  • Source url: External reference

32. How AI is unlocking the value of multi-omic data in drug discovery

  • Site name: sanogenetics.com
  • Published date: 2025-01-01
  • Type: WEBPAGE
  • Source url: External reference

33. Challenges in AI-driven Biomedical Multimodal Data Fusion and ...

  • Site name: pubmed.ncbi.nlm.nih.gov
  • Published date: 2025-10-05
  • Type: WEBPAGE
  • Source url: External reference

34. Challenges in AI-driven Biomedical Multimodal Data Fusion and ...

  • Site name: academic.oup.com
  • Published date: 2025-05-10
  • Type: WEBPAGE
  • Source url: External reference

35. Challenges in AI-driven Biomedical Multimodal Data Fusion and ...

  • Site name: pmc.ncbi.nlm.nih.gov
  • Published date: 2010-02-25
  • Type: WEBPAGE
  • Source url: External reference

36. Unlocking the potential: multimodal AI in biotechnology and digital ...

  • Site name: nature.com
  • Published date: 2025-10-20
  • Type: WEBPAGE
  • Source url: External reference

37. From siloed data to breakthroughs: multimodal AI in drug discovery

  • Site name: drugtargetreview.com
  • Published date: 2025-06-11
  • Type: WEBPAGE
  • Source url: External reference

38. Multimodal data fusion for cancer biomarker discovery with deep learning

  • Authors: Steyaert S, Pizurica M, Nagaraj D, Khandelwal P, Hernandez-Boussard T, Gentles AJ, Gevaert O
  • Journal: Nature machine intelligence
  • Journal quality: Domain leading
  • Publication year: 2023
  • Citation count: 240
  • Type: PAPER
  • Doi: 10.1038/s42256-023-00633-5
  • Pmid: 37693852
  • Source url: External reference

39. Screening and Validation of Functional Residues of the Antimicrobial Peptide PpRcys1

  • Authors: Tao M, Fei Z, Sun A, Yu G, Ye H, Shi H, Zhang W, Wang J
  • Journal: Biomolecules
  • Journal quality: Low quality
  • Publication year: 2025
  • Citation count: 12
  • Type: PAPER
  • Doi: 10.3390/biom15111617
  • Pmid: 41301535
  • Source url: External reference

40. AI-driven multimodal colorimetric analytics for biomedical and behavioral health diagnostics

  • Authors: Hagos DH, Aryal SK, Ymele-Leki P, Burge LL
  • Journal: Computational and structural biotechnology journal
  • Publication year: 2025
  • Citation count: 2
  • Type: PAPER
  • Doi: 10.1016/j.csbj.2025.05.015
  • Pmid: 40520591
  • Source url: External reference

41. From large language models to multimodal AI: a scoping review on the potential of generative AI in medicine

  • Authors: Lukas Buess, Matthias Keicher, Nassir Navab, Andreas K. Maier, Soroosh Tayebi Arasteh
  • Journal: Biomedical Engineering Letters
  • Publication year: 2025
  • Citation count: 6
  • Type: PAPER
  • Doi: 10.1007/s13534-025-00497-1
  • Pmid: 40917142
  • Source url: External reference

42. Surgical treatment of giant phyllodes tumors of the breast: a series of rare cases

  • Authors: Chen C, Xu Y, Huang X, Lin Y, Sun Q
  • Journal: Frontiers in oncology
  • Journal quality: Low quality
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.3389/fonc.2025.1591306
  • Pmid: 41179666
  • Source url: External reference

43. Multimodal biomedical AI

  • Authors: Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ
  • Journal: Nature medicine
  • Journal quality: Highest quality
  • Publication year: 2022
  • Citation count: 817
  • Type: PAPER
  • Doi: 10.1038/s41591-022-01981-2
  • Pmid: 36109635
  • Source url: External reference

44. How AI and Automation Are Changing Drug Discovery

  • Site name: bellbrooklabs.com
  • Published date: 2025-11-07
  • Type: WEBPAGE
  • Source url: External reference

45. How AI and Automation Are Changing Drug Discovery

  • Site name: bellbrooklabs.com
  • Published date: 2025-11-07
  • Type: WEBPAGE
  • Source url: External reference

46. Artificial intelligence for drug target identification

  • Site name: sciencedirect.com
  • Published date: 2025-01-01
  • Type: WEBPAGE
  • Source url: External reference

47. AI-powered therapeutic target discovery

  • Site name: sciencedirect.com
  • Published date: 2023-09-01
  • Type: WEBPAGE
  • Source url: External reference

48. Application of Artificial Intelligence In Drug-target ...

  • Site name: nature.com
  • Published date: 2025-01-13
  • Type: WEBPAGE
  • Source url: External reference

49. Generative AI in drug discovery and development - NIH

  • Site name: pmc.ncbi.nlm.nih.gov
  • Published date: 2014-08-24
  • Type: WEBPAGE
  • Source url: External reference

50. AI-guided Antibiotic Discovery Pipeline from Target Selection to Compound Identification

  • Authors: Maximilian G. Schuh, Joshua Hesse, Stephan A. Sieber
  • Journal: ArXiv; arXiv.org
  • Publication year: 2025
  • Citation count: 2
  • Type: PAPER
  • Doi: 10.48550/arXiv.2504.11091
  • Source url: External reference

51. Hybrid Impedimetric Biosensors for Express Protein Markers Detection

  • Authors: Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T
  • Journal: Micromachines
  • Journal quality: Low quality
  • Publication year: 2024
  • Citation count: 16
  • Type: PAPER
  • Doi: 10.3390/mi15020181
  • Pmid: 38398911
  • Source url: External reference

52. Cross-disciplinary perspectives on the potential for artificial intelligence across chemistry

  • Authors: Mroz AM, Basford AR, Hastedt F, Jayasekera IS, Mosquera-Lois I, Sedgwick R, Ballester PJ, Bocarsly JD, Antonio Del Río Chanona E, Evans ML, Frost JM, Ganose AM, Greenaway RL, Kuok Mimi Hii K, Li Y, Misener R, Walsh A, Zhang D, Jelfs KE
  • Journal: Chemical Society reviews
  • Publication year: 2025
  • Citation count: 12
  • Type: PAPER
  • Doi: 10.1039/d5cs00146c
  • Pmid: 40278836
  • Source url: External reference

53. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery

  • Authors: Singh S, Kumar R, Payra S, Singh SK
  • Journal: Cureus
  • Journal quality: Low quality
  • Publication year: 2023
  • Citation count: 119
  • Type: PAPER
  • Doi: 10.7759/cureus.44359
  • Pmid: 37779744
  • Source url: External reference

54. Automating reward function configuration for drug design

  • Authors: Marius Urbonas, Temitope Ajileye, Paul Gainer, Douglas Pires
  • Journal: ArXiv; arXiv.org
  • Publication year: 2023
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.48550/arXiv.2312.09865
  • Source url: External reference

55. Advances in the discovery of new chemotypes through ultra-large library docking

  • Authors: Felix Potlitz, Andreas Link, L. Schulig
  • Journal: Expert Opinion on Drug Discovery
  • Publication year: 2023
  • Citation count: 16
  • Type: PAPER
  • Doi: 10.1080/17460441.2023.2171984
  • Pmid: 36714919
  • Source url: External reference

56. Artificial intelligence in interdisciplinary life science and drug discovery research

  • Authors: Bajorath J
  • Journal: Future science OA
  • Journal quality: Low quality
  • Publication year: 2022
  • Citation count: 20
  • Type: PAPER
  • Doi: 10.2144/fsoa-2022-0010
  • Pmid: 35369273
  • Source url: External reference

57. AI-driven robotic chemist for autonomous synthesis of organic molecules

  • Authors: Ha T, Lee D, Kwon Y, Park MS, Lee S, Jang J, Choi B, Jeon H, Kim J, Choi H, Seo HT, Choi W, Hong W, Park YJ, Jang J, Cho J, Kim B, Kwon H, Kim G, Oh WS, Kim JW, Choi J, Min M, Jeon A, Jung Y, Kim E, Lee H, Choi YS
  • Journal: Science advances
  • Journal quality: Highest quality
  • Publication year: 2023
  • Citation count: 62
  • Type: PAPER
  • Doi: 10.1126/sciadv.adj0461
  • Pmid: 37910607
  • Source url: External reference

58. The way to AI-controlled synthesis: how far do we need to go?

  • Authors: Wang W, Liu Y, Wang Z, Hao G, Song B
  • Journal: Chemical science
  • Journal quality: Highest quality
  • Publication year: 2022
  • Citation count: 9
  • Type: PAPER
  • Doi: 10.1039/d2sc04419f
  • Pmid: 36519036
  • Source url: External reference

59. BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments

  • Authors: Yibo Qiu, Zan Huang, Zhiyu Wang, Handi Liu, Yiling Qiao, Yifeng Hu, Shu'ang Sun, Hangke Peng, Ronald X Xu, Mingzhai Sun
  • Journal: ArXiv; arXiv.org
  • Publication year: 2025
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.48550/arXiv.2507.01485
  • Source url: External reference

60. Autonomous Discovery | Argonne National Laboratory

61. Energy Department Launches Breakthrough AI-Driven ...

  • Site name: energy.gov
  • Published date: 2025-12-05
  • Type: WEBPAGE
  • Source url: External reference

62. How AI and Automation are Speeding Up Science and ...

  • Site name: newscenter.lbl.gov
  • Published date: 2025-09-25
  • Type: WEBPAGE
  • Source url: External reference

63. Robotic Scientists and AI Lab Automation

  • Site name: sapiosciences.com
  • Published date: 2025-08-01
  • Type: WEBPAGE
  • Source url: External reference

64. Indirect Zero-Field Nuclear Magnetic Resonance Spectroscopy

  • Authors: Buckenmaier K, Neumann R, Bullinger F, Kempf N, Povolni P, Engelmann J, Samlow J, Hövener JB, Scheffler K, Ortmeier A, Plaumann M, Körber R, Theis T, Pravdivtsev AN
  • Journal: Analytical chemistry
  • Journal quality: Highest quality
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.1021/acs.analchem.5c00874
  • Pmid: 40709781
  • Source url: External reference

65. Toward autonomous design and synthesis of novel inorganic materials

  • Authors: Szymanski NJ, Zeng Y, Huo H, Bartel CJ, Kim H, Ceder G
  • Journal: Materials horizons
  • Journal quality: Domain leading
  • Publication year: 2021
  • Citation count: 134
  • Type: PAPER
  • Doi: 10.1039/d1mh00495f
  • Pmid: 34846423
  • Source url: External reference

66. Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production

  • Authors: Li P, He C, Li G, Ding P, Lan M, Gao Z, Jiao Y
  • Journal: Bioengineered
  • Publication year: 2020
  • Citation count: 98
  • Type: PAPER
  • Doi: 10.1080/21655979.2020.1733733
  • Pmid: 32125259
  • Source url: External reference

67. The Impact of Cast Walker Design on Metabolic Costs of Walking and Perceived Exertion

  • Authors: Standage E, Tookey D, Ukachukwu U, Avalos M, Crews RT, Rosenblatt NJ
  • Journal: Diabetology
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.3390/diabetology6090098
  • Pmid: 41019833
  • Source url: External reference

68. Autonomous Smart Laboratories : Center for AI and Robotic ...

  • Site name: engineering.purdue.edu
  • Published date: 2025-09-29
  • Type: WEBPAGE
  • Source url: External reference

69. The Rise of Autonomous Labs in Life Science - Sartorius

  • Site name: sartorius.com
  • Published date: 2025-11-13
  • Type: WEBPAGE
  • Source url: External reference

70. How AI and Automation Are Changing Drug Discovery

  • Site name: bellbrooklabs.com
  • Published date: 2025-11-07
  • Type: WEBPAGE
  • Source url: External reference

71. The advancement of artificial intelligence in biomedical research and health innovation: challenges and opportunities in emerging economies

  • Authors: da Silva RGL
  • Journal: Globalization and health
  • Journal quality: Peer reviewed
  • Publication year: 2024
  • Citation count: 38
  • Type: PAPER
  • Doi: 10.1186/s12992-024-01049-5
  • Pmid: 38773458
  • Source url: External reference

72. AI approaches for the discovery and validation of drug targets - PMC

  • Site name: pmc.ncbi.nlm.nih.gov
  • Published date: 2024-05-24
  • Type: WEBPAGE
  • Source url: External reference

73. Autonomous ‘self-driving’ laboratories: a review of technology and policy implications

  • Authors: Alexander V. Tobias, Adam Wahab
  • Journal: Royal Society Open Science
  • Publication year: 2025
  • Citation count: 11
  • Type: PAPER
  • Doi: 10.1098/rsos.250646
  • Pmid: 40852582
  • Source url: External reference

74. Autonomous 'self-driving' laboratories: a review of technology ...

  • Site name: royalsocietypublishing.org
  • Published date: 2025-07-16
  • Type: WEBPAGE
  • Source url: External reference

75. ChemLex unveils AI-powered drug discovery lab in ...

  • Site name: straitstimes.com
  • Published date: 2025-12-08
  • Type: WEBPAGE
  • Source url: External reference

76. Agentic AI for Scientific Research: Autonomous ...

  • Site name: sapiosciences.com
  • Published date: 2025-05-22
  • Type: WEBPAGE
  • Source url: External reference

77. AI-driven target discovery: it's a journey - Owkin

78. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design

  • Authors: Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP
  • Journal: Pharmaceutics
  • Journal quality: Low quality
  • Publication year: 2023
  • Citation count: 686
  • Type: PAPER
  • Doi: 10.3390/pharmaceutics15071916
  • Pmid: 37514102
  • Source url: External reference

79. The future of pharmaceuticals: Artificial intelligence in drug ...

  • Site name: sciencedirect.com
  • Published date: 2025-08-01
  • Type: WEBPAGE
  • Source url: External reference

80. Next-generation intelligent laboratories for materials design and manufacturing

  • Authors: Peng X, Wang X
  • Journal: MRS bulletin
  • Publication year: 2023
  • Citation count: 21
  • Type: PAPER
  • Doi: 10.1557/s43577-023-00481-z
  • Pmid: 36960275
  • Source url: External reference

81. The Bright Future of Materials Science with AI: Self-Driving Laboratories and Closed-Loop Discovery

  • Authors: Dilshod Nematov, Iskandar Raufov, Saidjaafar Murodzoda, Anushervon Ashurov, Sakhidod Sattorzoda
  • Journal: Journal of Modern Nanotechnology
  • Publication year: 2025
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.53964/jmn.2025002
  • Source url: External reference

82. The Rise of Autonomous Labs in Life Science

  • Site name: sartorius.com
  • Published date: 2025-11-13
  • Type: WEBPAGE
  • Source url: External reference

83. Recursion: Pioneering AI Drug Discovery

  • Site name: recursion.com
  • Published date: 2025-01-01
  • Type: WEBPAGE
  • Source url: External reference

84. The Drug Factory: Industrializing How New Drugs Are Found

  • Authors: Allen A, Nilsson L
  • Journal: SLAS discovery : advancing life sciences R & D
  • Journal quality: Peer reviewed
  • Publication year: 2021
  • Citation count: 3
  • Type: PAPER
  • Doi: 10.1177/24725552211028124
  • Pmid: 34210199
  • Source url: External reference

85. 14 Biotechs Utilizing AI-based Research Platforms

  • Site name: biopharmatrend.com
  • Published date: 2025-11-11
  • Type: WEBPAGE
  • Source url: External reference

86. Iktos | Generative AI & Robotics for Drug Discovery

87. 12 AI drug discovery companies you should know about

  • Site name: labiotech.eu
  • Published date: 2025-10-28
  • Type: WEBPAGE
  • Source url: External reference

88. How AI and Automation Are Changing Drug Discovery

  • Site name: bellbrooklabs.com
  • Published date: 2025-11-07
  • Type: WEBPAGE
  • Source url: External reference

89. The Future of Drug Discovery: Integrating Human, AI and Robotics

  • Site name: newsroom.astellas.com
  • Published date: 2025-04-22
  • Type: WEBPAGE
  • Source url: External reference

90. Autonomous 'self-driving' laboratories: a review of technology ...

  • Site name: royalsocietypublishing.org
  • Published date: 2025-07-16
  • Type: WEBPAGE
  • Source url: External reference

91. Operating advanced scientific instruments with AI agents that learn on the job

  • Authors: Aikaterini Vriza, Michael H. Prince, Tao Zhou, Henry Chan, Mathew J. Cherukara
  • Publication year: 2025
  • Type: PAPER
  • Source url: External reference

92. Cloud-Native Platform Accelerates AI-Driven Drug Discovery

  • Site name: excelra.com
  • Published date: 2025-11-21
  • Type: WEBPAGE
  • Source url: External reference

93. Targeted therapies in primary vaginal cancer

  • Authors: Padrón LT, Schröder C, Marinova M, Thiesler T, Otten LA, Kristiansen G, Mustea A, Egger EK
  • Journal: Journal of cancer research and clinical oncology
  • Journal quality: Peer reviewed
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.1007/s00432-025-06267-x
  • Pmid: 40784918
  • Source url: External reference

94. Artificial Intelligence for Drug Development - FDA

95. Considerations for the Use of Artificial Intelligence - FDA

96. FDA AI Guidance - A New Era for Biotech, Diagnostics and ...

  • Site name: duanemorris.com
  • Published date: 2025-02-12
  • Type: WEBPAGE
  • Source url: External reference

97. FDA Qualifies First AI Drug Development Tool

98. Regulating the Use of AI in Drug Development: Legal Challenges ...

99. Artificial Intelligence Applied to clinical trials: opportunities and challenges

  • Authors: Askin S, Burkhalter D, Calado G, El Dakrouni S
  • Journal: Health and technology
  • Journal quality: Peer reviewed
  • Publication year: 2023
  • Citation count: 210
  • Type: PAPER
  • Doi: 10.1007/s12553-023-00738-2
  • Pmid: 36923325
  • Source url: External reference

100. The future of AI regulation in drug development - PubMed Central

  • Site name: pmc.ncbi.nlm.nih.gov
  • Published date: 2025-06-02
  • Type: WEBPAGE
  • Source url: External reference

101. Artificial intelligence | European Medicines Agency (EMA)

  • Site name: ema.europa.eu
  • Published date: 2025-09-29
  • Type: WEBPAGE
  • Source url: External reference

102. Multidisciplinary: artificial intelligence (AI)

  • Site name: ema.europa.eu
  • Published date: 2023-07-19
  • Type: WEBPAGE
  • Source url: External reference

103. Anti-Agrobacterium tumefactions sesquiterpene derivatives from the marine-derived fungus Trichoderma effusum

  • Authors: Liu Y, Qi L, Xu M, Li W, Liu N, He X, Zhang Y
  • Journal: Frontiers in microbiology
  • Journal quality: Peer reviewed
  • Publication year: 2024
  • Citation count: 2
  • Type: PAPER
  • Doi: 10.3389/fmicb.2024.1446283
  • Pmid: 39155986
  • Source url: External reference

104. AI-Driven Drug Discovery: A Comprehensive Review

  • Authors: Ferreira FJN, Carneiro AS
  • Journal: ACS omega
  • Journal quality: Peer reviewed
  • Publication year: 2025
  • Citation count: 17
  • Type: PAPER
  • Doi: 10.1021/acsomega.5c00549
  • Pmid: 40547666
  • Source url: External reference

105. Meta-Modeling with Drug Discovery Stack Regressor for Drug Discovery: An Explainable AI Perspective.

  • Authors: Spoorthi J S, Vijayalakshmi M, S. A, S. Nathan
  • Journal: Current drug discovery technologies; Current Drug Discovery Technologies
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.2174/0115701638405489251006073137
  • Pmid: 41147272
  • Source url: External reference

106. Regulatory Perspectives for AI/ML Implementation in Pharmaceutical GMP Environments

  • Authors: Niazi SK
  • Journal: Pharmaceuticals (Basel, Switzerland)
  • Publication year: 2025
  • Citation count: 11
  • Type: PAPER
  • Doi: 10.3390/ph18060901
  • Pmid: 40573297
  • Source url: External reference

107. Advancing Personalized Medicine: An Explainable AI-Driven Multi-Modal Organ-on-Chip Framework for Precision Drug Development

  • Authors: Shantanu Ashok Dashasahastra
  • Journal: INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.55041/ijsrem52352
  • Source url: External reference

108. Explainable AI in Gxp Validation: Balancing Automation, Traceability, And Regulatory Trust in The Pharmaceutical Industry

  • Authors: S. Nair
  • Journal: Clinical Medicine And Health Research Journal
  • Publication year: 2025
  • Citation count: 3
  • Type: PAPER
  • Doi: 10.18535/cmhrj.v5i05.509
  • Source url: External reference

109. Measurement System and Testing Procedure for Characterization of the Conversion Accuracy of Voltage-to-Voltage and Voltage-to-Current Integrating Circuits for Rogowski Coils

  • Authors: Kaczmarek M
  • Journal: Sensors (Basel, Switzerland)
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.3390/s25206357
  • Pmid: 41157409
  • Source url: External reference

110. An Airborne Gravity Gradient Compensation Method Based on Convolutional and Long Short-Term Memory Neural Networks

  • Authors: Zhou S, Yang C, Cheng Y, Jiao J
  • Journal: Sensors (Basel, Switzerland)
  • Publication year: 2025
  • Citation count: 2
  • Type: PAPER
  • Doi: 10.3390/s25020421
  • Pmid: 39860791
  • Source url: External reference

111. Explainable AI in Drug Discovery and Clinical Trials: Bridging Prediction, Interpretation, and Ethics

  • Authors: Arjun Anand
  • Journal: International Journal for Research in Applied Science and Engineering Technology
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.22214/ijraset.2025.71366
  • Source url: External reference

112. The future of AI regulation in drug development: a comparative analysis

  • Site name: pmc.ncbi.nlm.nih.gov
  • Published date: 2025-06-02
  • Type: WEBPAGE
  • Source url: External reference

113. A Regulatory Framework for Integrating AI into Drug Development

  • Site name: flagshippioneering.com
  • Published date: 2024-08-21
  • Type: WEBPAGE
  • Source url: External reference

114. AI validation in pharma: maintaining compliance and trust

115. Artificial Intelligence for Drug Development - FDA

116. AI in Drug Development: Regulatory Compliance Challenges

  • Site name: lifesciences.danaher.com
  • Published date: 2025-11-21
  • Type: WEBPAGE
  • Source url: External reference

117. Relationship Between Coronal Plane Alignment of the Knee Phenotypes and Distal Femoral Rotation

  • Authors: León-Muñoz VJ, Hurtado-Avilés J, Santonja-Medina F, Lajara-Marco F, López-López M, Moya-Angeler J
  • Journal: Journal of clinical medicine
  • Journal quality: Low quality
  • Publication year: 2025
  • Citation count: 2
  • Type: PAPER
  • Doi: 10.3390/jcm14051679
  • Pmid: 40095708
  • Source url: External reference

118. Evaluating Critical Success Factors in AI-Driven Drug Discovery Using AHP: A Strategic Framework for Optimization

  • Authors: Amir Mohamed Talib, Areen Metib Al-Hgaish, Rodziah Binti Atan, Abdulaziz Alshammari, Fahad Omar Alomary, R. Yaakob, Abdulaziz Alsahli, Mohd Hafeez Osman
  • Journal: IEEE Access
  • Publication year: 2025
  • Citation count: 2
  • Type: PAPER
  • Doi: 10.1109/ACCESS.2025.3546925
  • Source url: External reference

119. AI in Drug Development: Clinical Validation and ...

  • Site name: globalforum.diaglobal.org
  • Published date: 2025-06-06
  • Type: WEBPAGE
  • Source url: External reference

120. Tranexamic Acid Reduces Transfusion Rates After Modular Hemiarthroplasty for Pathological Femoral Fractures: A Retrospective Study

  • Authors: Biega P, Guzik G
  • Journal: Advances in orthopedics
  • Journal quality: Low quality
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.1155/aort/3173784
  • Pmid: 41180854
  • Source url: External reference

121. Is regulatory science ready for artificial intelligence?

  • Authors: Hartung T, Whelan M, Tong W, Califf RM
  • Journal: NPJ digital medicine
  • Publication year: 2025
  • Citation count: 7
  • Type: PAPER
  • Doi: 10.1038/s41746-025-01596-0
  • Pmid: 40210953
  • Source url: External reference

122. Ethics, Bias, and Governance: Regulatory Perspectives on AI in Drug Development

  • Authors: Dr. G. Parimala Devi, Kandati Bhavitha
  • Journal: Scientific Hub of Applied Research in Emerging Medical science & technology
  • Publication year: 2025
  • Type: PAPER
  • Doi: 10.61096/shareme.v4.iss3.2025.82-91
  • Source url: External reference

123. Causaly Pipeline Graph: A Guide to AI in Drug Discovery | IntuitionLabs

  • Site name: intuitionlabs.ai
  • Published date: 2025-12-08
  • Type: WEBPAGE
  • Source url: External reference

124. AI for Biotech: Building a Competitive Intelligence Stack | IntuitionLabs

  • Site name: intuitionlabs.ai
  • Published date: 2025-12-09
  • Type: WEBPAGE
  • Source url: External reference

125. An AI Approach to Generate Novel Pharmaceuticals using Patent Data

  • Site name: drugpatentwatch.com
  • Published date: 2025-07-17
  • Type: WEBPAGE
  • Source url: External reference

126. Leveraging AI for Strategic Decision-Making in Biopharmaceutical Program Management: A Framework for Risk and Opportunity Analysis

  • Authors: George Stephen
  • Journal: International Journal of Management Technology; International journal of management and technology
  • Publication year: 2025
  • Citation count: 1
  • Type: PAPER
  • Doi: 10.37745/ijmt.2013/vol12n4126
  • Source url: External reference

127. AI-based language models powering drug discovery and development

  • Authors: Liu Z, Roberts RA, Lal-Nag M, Chen X, Huang R, Tong W
  • Journal: Drug discovery today
  • Journal quality: Domain leading
  • Publication year: 2021
  • Citation count: 138
  • Type: PAPER
  • Doi: 10.1016/j.drudis.2021.06.009
  • Pmid: 34216835
  • Source url: External reference

128. How AI can support drug development portfolio decisions - EY

129. Causaly Pipeline Graph: A Guide to AI in Drug Discovery | IntuitionLabs

  • Site name: intuitionlabs.ai
  • Published date: 2025-12-08
  • Type: WEBPAGE
  • Source url: External reference

130. ARTIFICIAL INTELLIGENCE AIDED INVESTMENT ANALYSIS SYSTEM FOR BIOTECHNOLOGY REGULATORY APPROVALS

  • Inventors: CASABURI GIORGIO, SIMEONE ANTONIO, BRUNI CLAUDIO, MARIOTTI PAOLO, PASQUARIELLO EUGENIO, RICCO EMANUELE
  • Applicants: CASABURI GIORGIO, SIMEONE ANTONIO, BRUNI CLAUDIO, MARIOTTI PAOLO, PASQUARIELLO EUGENIO, RICCO EMANUELE
  • Publication date: 2025-10-16
  • Priority date: 2024-04-15
  • Jurisdiction: US
  • Type: PATENT
  • Publication number: US20250322461
  • Source url: External reference

131. ARTIFICIAL INTELLIGENCE-POWERED INCUBATION MANAGEMENT SYSTEM

  • Inventors: FAHIM NADINE, KRETZER KEVIN, ANEMA DAVID, MAHMUD ABU, SAMUELSSON JEFFREY, SHAH HEMEL, BANSAL ROMIT, HARVEY ADRIAN, KULKARNI AMEYA, WONG ADRIAN, ROBERTSON-MAIR ALEXANDER, CHAN LOUIS, NARAYAN SHALINI
  • Applicants: KPMG INT SERVICES LTD
  • Publication date: 2025-09-04
  • Priority date: 2024-03-04
  • Jurisdiction: US
  • Type: PATENT
  • Publication number: US20250278698
  • Source url: External reference

132. ARTIFICIAL INTELLIGENCE OPTIMIZED UNSTRUCTURED DATA ANALYTICS SYSTEMS AND METHODS

  • Inventors: WANG XIAOYU
  • Applicants: STRATIFYD INC
  • Publication date: 2018-08-30
  • Priority date: 2016-05-11
  • Jurisdiction: US
  • Cited by count: 103
  • Type: PATENT
  • Publication number: US20180246883
  • Source url: External reference

133. Artificial intelligence optimized unstructured data analytics systems and methods

  • Inventors: WANG XIAOYU
  • Applicants: STRATIFYD INC
  • Publication date: 2021-05-11
  • Priority date: 2016-05-11
  • Jurisdiction: US
  • Cited by count: 2
  • Type: PATENT
  • Publication number: US11003864
  • Source url: External reference

134. Harnessing Artificial Intelligence in Drug Discovery and Development

  • Site name: accc-cancer.org
  • Published date: 2024-12-20
  • Type: WEBPAGE
  • Source url: External reference

135. The Role of AI in Drug Discovery: Challenges, Opportunities, and ...

  • Site name: pmc.ncbi.nlm.nih.gov
  • Published date: 2018-06-23
  • Type: WEBPAGE
  • Source url: External reference

136. AI and machine learning: Revolutionising drug discovery ... - Roche

137. Recursion: Pioneering AI Drug Discovery

  • Site name: recursion.com
  • Published date: 2025-01-01
  • Type: WEBPAGE
  • Source url: External reference

138. Temporal and spatial co-occurrence of pacific oyster mortality and increased planktonic Vibrio abundance

  • Authors: Scanes E, Siboni N, Potts J, Rao S, Labbate M, Seymour JR
  • Journal: iScience
  • Journal quality: Peer reviewed
  • Publication year: 2025
  • Citation count: 4
  • Type: PAPER
  • Doi: 10.1016/j.isci.2024.111674
  • Pmid: 39898048
  • Source url: External reference

139. Artificial Intelligence In Drug Discovery Market Report, 2030

  • Site name: grandviewresearch.com
  • Published date: 2018-01-01
  • Type: WEBPAGE
  • Source url: External reference

140. Causaly Pipeline Graph: A Guide to AI in Drug Discovery

  • Site name: intuitionlabs.ai
  • Published date: 2025-12-08
  • Type: WEBPAGE
  • Source url: External reference

141. The State of Competitive Intelligence in Pharma

  • Site name: northernlight.com
  • Published date: 2025-07-02
  • Type: WEBPAGE
  • Source url: External reference

142. 5 Strategies to Improve Workflow Efficiency in Drug Discovery

  • Site name: genemod.net
  • Published date: 2024-12-26
  • Type: WEBPAGE
  • Source url: External reference

143. The machine learning life cycle and the cloud: implications for drug discovery

  • Authors: Spjuth O, Frid J, Hellander A
  • Journal: Expert opinion on drug discovery
  • Journal quality: Peer reviewed
  • Publication year: 2021
  • Citation count: 54
  • Type: PAPER
  • Doi: 10.1080/17460441.2021.1932812
  • Pmid: 34057379
  • Source url: External reference

144. Digitalizing the design-make-test-analyze workflow in drug ...

  • Site name: sciencedirect.com
  • Published date: 2025-06-01
  • Type: WEBPAGE
  • Source url: External reference

145. The recent advances in the approach of artificial intelligence (AI) towards drug discovery

  • Authors: Khan MK, Raza M, Shahbaz M, Hussain I, Khan MF, Xie Z, Shah SSA, Tareen AK, Bashir Z, Khan K
  • Journal: Frontiers in chemistry
  • Journal quality: Low quality
  • Publication year: 2024
  • Citation count: 18
  • Type: PAPER
  • Doi: 10.3389/fchem.2024.1408740
  • Pmid: 38882215
  • Source url: External reference

146. Pathway-Based Drug-Repurposing Schemes in Cancer: The Role of Translational Bioinformatics

  • Authors: Hernández-Lemus E, Martínez-García M
  • Journal: Frontiers in oncology
  • Journal quality: Low quality
  • Publication year: 2020
  • Citation count: 47
  • Type: PAPER
  • Doi: 10.3389/fonc.2020.605680
  • Pmid: 33520715
  • Source url: External reference